Test 2 / Numerical Mathematics 1, May 31st 2022, University of Groningen

Instructions

- You have 2 hours to complete the test. When applicable, people with special facilities have 2 h 20 minutes in total.
- The exam is "closed book", meaning that you can only make use of the material given to you.
- The grade will be computed as the number of obtained points, plus 1 .
- All answers need to be justified using mathematical arguments.

Exercise 1 (6 points)

Consider the function $f(x)=x^{3}-7 x+2$ with $x \in[0,1]$.
(a) 0.5 Show that any fixed-point of $g(x)=\left(x^{3}+2\right) / 7$ is also a root of $f(x)$. Trivial
(b) 0.5 Show that if $x \in[0,1]$, then $g(x) \in[0,1]$.

Trivial
(c) 1.0 First show that $g(x)$ is a contraction on $x \in[0,1]$.

Derivate (0.5 pt), then take the max $(0.25 \mathrm{pt})$. Then show that $L<1(0.25 \mathrm{pt})$.
(d) 0.5 Show that $g(x)$ has a unique fixed-point on $x \in[0,1]$.

Existence is assured by b(0.1 pt).
Assume two fixed points ($0.2 \mathbf{~ p t}$). Then using that $g(x)$ is a contraction, one gets unicity (0.2 pt).
(e) 2.0 Show that the sequence $x_{k+1}=g\left(x_{k}\right), k \geq 0$ converges to the root of $f(x)$ in $x \in[0,1]$ if $x_{0} \in[0,1]$.
$\left|x_{k+1}-x^{*}\right|=\left|g\left(x_{k}\right)-g\left(x^{*}\right)\right|(\mathbf{0 . 5} \mathbf{~ p t}), \leq L\left|x_{k}-x^{*}\right|(\mathbf{0 . 5} \mathbf{~ p t}), \leq L^{k+1}\left|x_{0}-x^{*}\right|(\mathbf{0 . 5}$
pt). Then it goes to zero when k goes to $\infty(0.5 \mathbf{~ p t})$.
(f) 0.5 Write the general formula for the Newton iteration for the problem $f(x)=0$, i.e. give an explicit form for computing x_{k+1} in terms of x_{k}.

$$
x_{k+1}=x_{k}-\frac{x_{k}^{3}-7 x_{k}+2}{3 x_{k}^{2}-7}(\mathbf{0 . 5} \mathbf{~ p t})
$$

No points for stating the formula for a general function $f(x)$.
(g) 1.0 Starting from $x_{0}=1$, perform: i) one fixed-point iteration with $g(x)$, and ii) one Newton iteration. Which method leads to a more accurate approximation $x_{1} \approx x_{*}$ if the root is $x_{*} \approx 0.289$?
i) $x_{1}=\left(1^{3}+2\right) / 7=3 / 7(\mathbf{0 . 4} \mathbf{~ p t})$
ii) $x_{1}=1-\frac{1^{3}-7.1+2}{3 \cdot 1^{2}-7}=1-\frac{1-7+2}{3-7}=0$. (0.4 pt)

The Newton method seems to give a larger error ($\mathbf{0 . 2} \mathbf{~ p t}$). Note that we could ask about given reasons for this but they can be multiple.

Exercise 2 (3 points)

We want to solve the linear system $A x=b$ for $x \in \mathbb{R}^{2}$ by using stationary Richardson iterations:

$$
x^{k}=x^{k-1}+\alpha\left(b-A x^{k-1}\right)
$$

using as initial guess the vector $x^{0}=[1,0]^{\top}, b=[0, \gamma]^{\top}$. The matrix A is given by:

$$
A=\left[\begin{array}{cc}
g & -d \\
-d & g
\end{array}\right], g>d>0
$$

(a) 1.0 Compute x^{1} from x^{0} in terms of α, g, d, γ.

$$
x^{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\top}+\alpha\left(\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{\top}-A\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\top}\right)=\left[\begin{array}{ll}
1-\alpha g, & 0+\alpha \gamma+d \alpha
\end{array}\right]^{\top}
$$

(0.5 pt) for each vector component.
(b) 2.0 Give a value of α in terms of g, γ and d so that convergence of the Richardson iterations towards $A^{-1} b$ is ensured. Justify your answers in view of the theory.
The eigenvalues of A are

$$
\lambda_{ \pm}=\frac{2 g \pm \sqrt{4 g^{2}-4\left(g^{2}-d^{2}\right)}}{2}=g \pm d>0
$$

((0.5 pt) for each correct eigenvalue). We need to choose α such that the spectral radius of the iteration matrix $I-\alpha A$ for the error is smaller than $1 \mathbf{(0 . 5} \mathbf{p t})$. Since A is SPD, any positive value smaller than $2 / \lambda_{+}=2 /(g+d)$ will ensure convergence (0.5 pt).

